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Abstract In the framework of a recently developed

scheme for a hybrid particle-field simulation technique

where self-consistent field theory and molecular dynamics

simulation method are combined, specific coarse-grained

models for aqueous solutions of phospholipids have been

validated. In particular, the transferability of the model in

the correct reproduction of non-lamellar phases has been

validated against reference particle–particle simulations.

By varying the water content, the proposed model is able to

correctly describe the different morphologies that are

experimentally observed such as micelles and reverse

micelles. The lower computational costs of the hybrid

techniques allow us to perform simulations of large-scale

systems that are needed to investigate the applications of

self-assembled structures of lipids in nanotechnologies.

Keywords Coarse-graining � Molecular dynamics �
Self-consistent field theory � Lipids

1 Introduction

Phospholipids are an important class of compounds having

both important biological functions (e.g., cell membranes)

and technological applications (e.g., liposomes and

micelles).

They can undergo different phase transition in aqueous

environments characterized by different morphologies

(mesomorphism and polymorphism).

They are an important class of biomolecules because

they form lipid bilayer structures that are fundamental

building blocks of cellular membranes. For this reason,

lipid bilayers have been attracting the interest of compu-

tational biophysics community, where people perform

atomistic and coarse-grained molecular dynamics simula-

tions of these systems for long time [1–13].

Mesomorphism and polymorphism can occur when

lipids are not included in the cell biomembranes. Despite

their importance in the biological systems, the molecular

structures of biological cell membranes, especially the

structures of ion channels and transmembrane proteins, are

not well understood yet.

When phospholipids are no longer under the constraints

that are imposed by intermolecular interactions that are

present within the biomembrane, they can form non-

lamellar (non-bilayer) phases, where the non-lamellar

phases include the hexagonal and cubic phases as well as

the diluted micellar phases.

Hexagonal phases are characterized by tubular

aggregates, and they can be composed of either normal or

reverse aggregates. Cubic phases are composed of curved

bilayers or micelles. Depending on the water concen-

tration, micelles change their aggregation form from

normal (‘oil in water’) to reverse (‘water in oil’)

micelles.
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Due to their relevance to the biological systems, most of

the simulation works on lipids have been focused on the

bilayer phase [10, 14–17]. With the advent of nanotech-

nology, self-assembled structures of lipids started to be

exploited in different ways. Lipids can be used as templates

for the assembly of nanoparticles. For example, gold

nanoparticles can be prepared using templates formed by

the tubular nanodomains of lipids [18, 19]. Lipid micelles

can be used as dispersant for carbon nanotubes in aqueous

media [20]. Liposomes can be used for drug delivery [21]

and as nanoreactors [22]. Reverse micelles can be used as

templates for the nanofabrication of tubes of conductive

polymers [23].

Although atomistic simulations can provide very

detailed and chemically consistent models of biological

phospholipids, they are very expensive way of studying

the assembling processes involving nanomaterials occur-

ring on the mesoscopic time ([ls) and length scales

([100 nm).

In order to bridge this gap between the length and time

scales covered by the atomistic simulations and the actual

scales of the relevant phenomena, different types of coarse-

grained (CG) models have been developed for phospho-

lipids. For example, implicit solvent models and explicit

solvent models for lipid bilayers have been reported [24–

26]. Among different approaches for developing such CG

models, specific models that retain some chemical details

are useful in determining the connection between the

chemical structure on the atomistic scales and the nano-

structures that are obtained by self-assembly in different

conditions.

In particular, these CG models usually employ several

different types of beads (not just hydrophobic and

hydrophilic), with several parameters for the force fields

derived from simulations based on atomistic models. A

successful and very widely explored example of this

approach is the MARTINI CG model developed by

Marrink and co-workers [27]. In the MARTINI force

field, the phospholipids are described by several types of

beads interacting via Lennard–Jones-type potentials with

different interaction parameters, with which one can

describe a smooth variation from the hydrophobic

to hydrophilic characters. Despite its simplicity, the

MARTINI force field is able to reproduce with surpris-

ingly good accuracy the properties of the self-assembly of

lipid molecules in the bilayers and the micellar phases

[15, 28, 29].

A different coarse-graining approach is based on a field

representation and has been proposed to model soft matter

systems. In particular, in the framework of the self-

consistent field (SCF) theory, the model systems are not

represented by particles but by density fields and the

mutual interactions between segments (beads) are decou-

pled and replaced by interactions with static external fields

[30]. Numerous applications of this approach to block

copolymers [31–35], proteins [36], polymer composites

[37] and colloidal particles [38, 39] for studying the large-

scale phenomena in soft matter have been proposed. There

have been several approaches to phospholipids and water

mixtures using approaches based on the field descriptions

[34, 40–43].

More recently, Müller and Smith [44] introduced a

hybrid approach in the framework of SCF theory by

combining it with a Monte Carlo simulation of a coarse-

grained model of polymer chains to study the phase sep-

aration in binary polymer mixtures. This approach has

been widely and successfully applied by Daoulas et al.

[45] to coarse-grained models of diblock copolymer thin

films and by Detcheverry et al. [46, 47] to polymer

nanocomposites. One of the advantages of this hybrid

approach is the absence of any limitation in treating

complex molecular architectures and/or intramolecular

interactions. With these preceding studies, very recently,

a hybrid particle-field approach, where the molecular

dynamics (MD) simulation method is combined with SCF

description (MD-SCF), was proposed and an implemen-

tation suitable for the treatment of atomistic force fields

and/or specific coarse-grained models has been reported

[48, 49]. In particular, specific coarse-grained models for

phospholipids and water, suitable for MD-SCF simula-

tions, have been developed. These models and the set of

parameters needed to evaluate the interactions between

the particles and the density fields have been optimized to

reproduce structural properties of reference full-atomistic

MD simulations of lipid bilayers. It was also proved that

this MD-SCF model is able to reproduce correctly the

physical behavior of the lipid bilayers [50]. The aim of the

present study was to validate these models for non-bilayer

phases. In particular, the transferability of the model to

systems different water contents has been validated

against reference simulations.

The paper is organized as follows: in Sect. 2, we

describe the basic concept of the SCF theory, which is

useful for the reader to understand the present investiga-

tion. We also give a brief description of the computational

scheme for the hybrid particle-field MD-SCF simulations.

In Sect. 3, the validation of the model by comparison with

classical MD simulations using the MARTINI force field is

reported. In the following, these full-atomistic simulations

will be referred as particle–particle (PP) simulations.

Finally, simulation results on the non-lamellar-type self-

assembly of dipalmitoylphosphatidylcholine (DPPC) mol-

ecules in its aqueous solutions with various concentrations

are shown.
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2 Computational methods

2.1 MD-SCF theory and implementation

In this section, a brief exposition of the recently developed

hybrid MD-SCF simulation scheme is reported. This section is

intended to quickly guide the reader to get the basis of the

methodology and to understand the framework of the present

investigation. In order to obtain this approach in more detail,

the readers should refer to Ref. [48] where the complete der-

ivation and the implementation are described and to refer-

ences [30, 33, 51–53] for general reviews of SCF methods.

The main feature of the hybrid MD-SCF approach is that the

evaluation of the non-bonded force and its potential between

atoms of different molecules, that is, the most computationally

expensive part of MD simulations, can be replaced by the

evaluation of an external potential that is dependent on the local

density at position r in MD-SCF simulations. According to the

spirit of SCF theory, a many body problem like molecular

motion in many molecule systems is reduced into the problem

of deriving the partition function of a single molecule in an

external potential V(r). Then, non-bonded force between atoms

of different molecules can be obtained from a suitable

expression of the V(r) and its derivatives.

In the frame of SCF theory, a molecule is regarded to be

interacting with the surrounding molecules not directly but

through a mean field. To derive such a mean field picture, we

start from a Hamiltonian of a system that is composed of M

molecules. The Hamiltonian is split into two parts ĤðCÞ ¼
Ĥ0ðCÞ þ ŴðCÞ, where C specifies a point in the phase space,

which is used as shorthand for a set of positions of all atoms in the

system. Here and also in the following, the symbol ^ (hat)

indicates that the associated physical quantity is a function of the

microscopic states described by the phase space C.

Ĥ0ðCÞ is the Hamiltonian of a reference ideal system

composed of non-interacting chains but with all the intra-

molecular interaction terms (bond, angle and non-bonded

interactions) that are taken into account in the standard MD

simulations. The term Ŵ(C) is the deviation from the ref-

erence system and taking into account of the intermolecular

non-bonded interactions.

Assuming the canonical (NVT) ensemble, the partition

function of this system is given by the following equation:

Z ¼ 1

M!

Z
dC exp �b½Ĥ0ðCÞ þ ŴðCÞ�

� �
; ð1Þ

where b ¼ 1
kBT.

From a microscopic point of view, the number density

of segments is defined as a sum of delta functions placed at

the center of mass of each segment as [30, 54]

/̂ðr; CÞ ¼
XM
p¼1

XSðpÞ
i¼0

d r� r
ðpÞ
i

� �
; ð2Þ

where M is the total number of molecules in the system, S(p)

is the number of particles contained in pth molecule, and

r
ðpÞ
i is the position of the ith particle in pth molecule. The

deviation Ŵ(C), according to Eq. 1, from the reference state

Ĥ0 originates from the interactions between molecules.

Several assumptions are introduced to calculate the

interaction term Ŵ(C). First of all, we assume that Ŵ(C)

depends on C only through the segment number density

/̂ðr; CÞ as

ŴðCÞ ¼ W ½/̂ðr; CÞ�; ð3Þ

where W ½/̂ðr; CÞ� means that W is a functional of /̂ðr; CÞ.
Using the identity for the d-functional

d½/̂ðr; CÞ � /ðrÞ�

¼
Z

D wðrÞf g exp i

Z
wðrÞ /̂ðr; CÞ � /ðrÞ

n o
dr

� �
;

we can rewrite the partition function in Eq. 1 as

Z ¼ 1

M!

Z
D /ðrÞf g

Z
D wðrÞf g exp

�
�b

�
�M

b
ln z

þW ½/ðrÞ� � 1

ib

Z
wðrÞ/ðrÞdr

�	
; ð4Þ

where z is the single-molecule partition function, and wðrÞ
is a conjugate field of /ðrÞ which appeared in the Fourier

representation of the d-functional, and is a complex field

[53].

For evaluating this partition function approximately,

the integrals over /ðrÞ and wðrÞ in Eq. 4 are replaced

with a Gaussian integral around the most probable state

that minimizes the argument of the exponential function

on the right side of Eq. 4 (so-called saddle point

approximation).

The minimization conditions in the form of functional

derivatives result in

VðrÞ � 1
ib wðrÞ ¼ dW½/ðrÞ�

d/ðrÞ

/ðrÞ ¼ � M
bz

dz
dVðrÞ ¼ /̂ðr; CÞ

D E
;

8<
: ð5Þ

where /(r) is the coarse-grained density at position r and

V(r) is the external potential conjugate to /(r) which is a

real field now.

In term of Eq. 5, it is possible to acquire an expression

for a density-dependent external potential acting on each

segment.
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Next, we assume that the density-dependent interaction

potential W, where each component species is specified by

the index K, takes the following form:

W /KðrÞf g½ �

¼
Z

dr
kBT

2

X
KK 0

vKK 0/KðrÞ/K 0 ðrÞ þ
1

2j

X
K

/KðrÞ � 1

 !2
0
@

1
A;

ð6Þ

where /K(r) is the coarse-grained density of the species K

at position r and vKK0 are the mean field parameters for the

interaction of a particle of type K with the density fields

due to the particles of type K0. Here, we redefined /K(r) as

the number density of the species K normalized by the total

average number density of the segments. This change in

the definition of /K(r) only affects the scale of the conju-

gate field V(r).

The second term of the integrand on the right-hand side

of Eq. 6 is the relaxed incompressibility condition, and j
is the compressibility that is assumed to be sufficiently

small [54]. Then, the corresponding mean field potential is

given by

VKðrÞ ¼
dW /KðrÞf g½ �

d/KðrÞ

¼ kBT
X

K 0
vKK 0/K 0 ðrÞ þ

1

j

X
K

/KðrÞ � 1

 !
: ð7Þ

Taking the case of a mixture of two components A and B as

an example, the mean field potential acting on a particle of

type A at position r is given by

VAðrÞ ¼ kBT vAA/AðrÞ þ vAB/BðrÞ½ �

þ 1

j
/AðrÞ þ /BðrÞ � /0ð Þ: ð8Þ

Thus, the force acting on the particle A at position r

imposed by the interaction with the mean field is

FAðrÞ ¼ �
oVAðrÞ

or

¼ �kBT vAA

o/AðrÞ
or

þ vAB

o/BðrÞ
or


 �

� 1

j
o/AðrÞ

or
þ o/BðrÞ

or


 �
: ð9Þ

The main advantage of hybrid MD-SCF scheme is that

the most computationally expensive part of the MD

simulations, that is, the evaluation of the non-bonded

force between atoms of different molecules, is replaced by

the evaluation of forces between single molecules with an

external potential. In order to connect particle and field

models, for the proposed hybrid MD-SCF scheme, it is

necessary to obtain a smooth coarse-grained density

function directly from the particle positions C. Let us

denote this procedure as

�Sf/̂ðr; CÞg ¼ /ðrÞ; ð10Þ

where �S is a symbolic name of the mapping from the

particle positions to the coarse-grained density. In order to

obtain a smooth spatial density from particle positions, the

simulation box is divided into several cells. In particular,

particles are sorted and, according to their positions,

assigned to ncell = nxnynz (where nx, ny and nz are the

number of cells in the x, y and z directions, respectively).

Furthermore, according to the position of each particle

inside a cell, a fraction of it will be assigned to each vertex

of the cell [46, 48–50, 55–57]. In order to explain the

procedure, a simpler two-dimensional case is described. In

Fig. 1a, the structure of a phospholipid and the corre-

sponding density field is schematized.

As described in Fig. 1b, the fraction of a particle

assigned to a given lattice point is proportional to the area

of a rectangle shown in the figure. For example, for a

particle with coordinates x and y, a fraction (l - x)(l - y)/

l2 will be assigned to the mesh point 1 and a fraction of xy/

l2 at mesh point 4 in Fig. 1b (for simplicity, l is the length

of the cell in both x and y directions). Thus, the density at

every mesh point is the sum of all fractions assigned from

all the cells that share a given lattice point. According to

the procedure described above, the size of the cell l is a

parameter defining the density coarse-graining. Larger is

the value of l, more particles will be included in every cell

and coarser will be the calculated density. Once the coarse-

grained density has been calculated from particle positions,

the spatial derivatives of the density field can be evaluated.

Spatial derivatives can be obtained by the differentiation of

the density lattice. In this way, the lattice where the

derivatives are defined is staggered with respect to the

lattice where the density is defined. As schematized in

Fig. 1b, the squares indicate the lattice points where the

density is defined. Correspondingly, the density gradients

are defined on the center of each edge (staggered lattice

points indicated by crosses in Fig. 1b) of the square sur-

rounding the density lattice points.

Once that both density and derivatives have been com-

puted on their corresponding lattices, the potential energy

and forces acting on the particles can be calculated using

values obtained by the interpolation of the density and of

its spatial derivatives in Eqs. 8 and 9.

The iteration algorithm used in MD-SCF approach is

explained in the following. According to the initial con-

figurations of the system (at time t0), a starting value of the

coarse-grained density is obtained, where the coarse-

grained density is defined on a lattice and the values of the

density and density gradients at the particles positions are
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calculated by linear interpolation. Then, from the density

gradients, forces acting on the particles at position r due to

the interaction with the density fields are computed

according to Eq. 9. The total force acting on the particles

will be the sum of the intramolecular forces (bonds, angles

and intramolecular non-bonded forces calculated as in

classical MD simulations) and the forces due to the inter-

actions of particles with density fields. After the force

calculation, a new configuration will be then obtained by

the integration of the equation of motion. In principle, for

every new configuration, an update of the CG density

calculated from the new coordinates should be performed.

Test simulations have shown that, due to the collective

nature of the density fields, it is possible to define an update

frequency of the coarse-grained densities without the loss

of accuracy [48, 49]. These results are in agreement with

the concepts behind the quasi-instantaneous field approxi-

mation discussed by Daoulas et al. [58] in the framework of

Single Chain in Mean Field (SCMF) Monte Carlo

simulations.

In other words, the values of the coarse-grained density

at lattice points are not updated at every timestep but only

at every prefixed density update time (Dtupdate). Then

between two updates, the values of the densities on the

lattice used to interpolate both density and its derivatives

will be constant. When an update of density is performed, a

new coarse-grained density will be obtained and the

iteration algorithm converges when the coarse-grained den-

sity and the particle-field potential become self-consistent.

2.2 Models and parameters

For the intramolecular interactions, parameters of the

coarse-grained (CG) MARTINI model have been consid-

ered [59]. In this model, bonds are described by a har-

monic-type potential of the form:

VbondðRÞ ¼
1

2
Kbond R� Rbondð Þ2 ð11Þ

where Rbond is the equilibrium bond length and Kbond is the

force constant of the bond. These parameters of the bond

potential used in the present study are reported in Table 1.

The stiffness of the chains is also taken into account by a

harmonic bending potential Vangle (h) that depends on the

cosine of the angle h between two successive bonds.

VangleðhÞ ¼
1

2
Kangle cosðhÞ � cosðh0Þf g2 ð12Þ

where Kangle is the force constant and h0 is the equilibrium

bond angle. Angle parameters adopted for the models of

this paper are reported in Table 2.

Intramolecular non-bonded interactions are modeled

using the parameters of the Lennard–Jones potentials and

have been set for all non-bonded pairs e = 2.0 kJ/mol and

Fig. 1 a Construction of

coarse-grained density for a

phospholipid. b Criterion for the

assignment of particle fractions

to lattice points. c Adopted

coarse-graining scheme for

DPPC
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r = 0.47 nm (which are repulsive according to the

MARTINI nomenclature) [59].

Particle-field vKK0 parameters (Eqs. 6 and 7) needed to

calculate the interactions between a particle of type K and

the density fields due to the particles of type K0 are listed in

Table 3. These parameters have been tuned to reproduce

structural properties of lipid bilayers. In particular, electron

density profiles of reference particle–particle simulations

and bilayer thicknesses can be well reproduced for DPPC

and several other lipids [50]. Furthermore, in order to

determine the value of the parameter j that regulates the

strength of the incompressibility condition imposed in

Eq. 7, we analyzed the behavior of density fluctuations in

reference PP simulation. More detailed information about

the model parameters can be found in Ref. [50].

2.3 Simulations details

For the use of a reference system for the CG simulations,

classical PP-MD simulations have been performed using

the program GROMACS (ver. 3.3) [60]. The timestep used

for the integration of equation of motion was 0.03 ps. The

temperature was kept constant using the weak coupling

method with sT = 0.1 ps, where the target temperatures

are listed in Table 3. A cut-off of 1.5 nm has been used to

truncate the non-bonded interactions.

The parallel molecular dynamics program OCCAM [61]

was used for MD-SCF simulations. MD-SCF simulations

have been performed using a timestep of 0.03 ps, with the

NVT ensemble by keeping the temperature constant using

Andersen thermostat with a collision frequency of 5 ps-1.

Details on the systems size and composition used in the

simulations in the present study are summarized in Table 4.

3 Results and discussion

3.1 Model validation: PP-MD versus MD-SCF

simulations

According to the coarse-graining strategy explained in the

previous chapter, pair interactions between particles are

replaced by the calculation of the interactions of single

particles in an external field. The main parameters regu-

lating these interactions are the mean field parameters vKK0

describing the interaction between particles of type K with

the density fields due to the particles of type K0. As

described in the previous chapters, a set of parameters that

are able to reproduce structural properties of lipid bilayers

for DPPC and several other lipids has been recently

reported [50].

In principle, the parameters of a coarse-grained model

are not always transferable. For example, v parameters can

be temperature and composition dependent. This depen-

dency cannot be known a priori and needs to be investi-

gated for every coarse-grained model. This feature of

coarse-grained models is general and is relevant also for

particle–particle coarse-grained models [62].

The main aim of the present paper was to validate the

hybrid MD-SCF models proposed for lipid bilayers in non-

lamellar phases corresponding to high or low water

content.

In this subsection, in order to validate the MD-SCF

simulations, the results of MD-SCF simulations are com-

pared with those of the classical PP-MD simulations.

In Fig. 2, self-assemblies of DPPC/water systems sim-

ulated using PP and MD-SCF models at two different water

contents (systems 1 and 2 of Table 4, respectively) are

compared. In the reference PP model, each CG water bead

corresponds to 4 real water molecules. In the present arti-

cle, this factor has been taken into account. For example,

ratio between CG water beads and DPPC molecules

reported in Table 4 is for systems 1 is 182 and for system 2

is 0.8. In terms of real water molecules, these ratios would

be 728 and 3.2.

Table 1 Parameters for bonding energetic terms

Bond type bo (nm) Kb (kJ mol-1 nm-2)

N–P 0.470 1,250

P–G 0.470 1,250

G–G 0.370 1,250

G–C 0.470 1,250

C–C 0.470 1,250

Table 2 Parameters for angle energetic terms

Angle type ho (�) Kh (kJ mol-1)

P–G–G 120 25.0

P–G–C 180 25.0

G–C–C 180 25.0

C–C–C 180 25.0

Table 3 Particle–field interaction parameters vKK0 9 RT (kJ/mol) for

particles of type K interacting with density fields due to particle of

type K0 are reported

N P G C W

N 0.00 -1.50 6.30 9.00 -8.10

P -1.50 0.00 4.50 13.50 -3.60

G 6.30 4.50 0.00 6.30 4.50

C 9.00 13.50 6.30 0.00 33.75

W -8.10 -3.60 4.50 33.75 0.00
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For both of these simulations, the initial configuration

and the simulation conditions are the same. The starting

configuration used in both simulations is a random mixture

of DPPC and water molecules.

For high water concentration (system 1), in both PP and

MD-SCF simulations, the formation of a micelle is

observed. In the case of MD-SCF simulation, the self-

assembling process of the micelle takes about 15 ns, which

is faster than the PP simulation (see Fig. 2a), where the

micelle is obtained after 25 ns (see Fig. 2b). In Fig. 3, the

radial density profiles of the micelle obtained in the MD-

SCF (Fig. 3a) and PP (Fig. 3b) simulations are compared.

Radial density profiles obtained in the MD-SCF and PP

simulations are similar. The main difference is observed in

the slopes of the curves. A further validation of the pro-

posed MD-SCF models can be done by calculating the

average number of lipid per micelle. These calculations can

be reliable only using larger systems in which two or more

micelles are in equilibrium with free lipid molecules. These

results will be discussed in Sect. 3.3.

The system at low water concentration (system 2)

shows a different behavior; in both PP and MD-SCF

simulations, a formation of reverse micelles is observed.

In particular, from Fig. 2c, it is clear that at about 12 ns

the system reaches a stable reverse micellar phase. In this

reverse micellar phase, polar head groups of the lipids and

the water molecules form cylinders included in the

hydrophobic majority phase made of lipid tails. This

result is in agreement with the formation of a hexagonal

reverse-cylindrical phase. The formation of this phase

structure is more clearly observed in Fig. 4a where

structures obtained from MD-SCF and PP simulations are

compared.

Differently from MD-SCF simulations, the cylinders

obtained in the PP simulation are less regular and the

water beads are not included in the cylinders but they

form clusters with different sizes inside the hydrophobic

phase formed by the lipid tails. We expect that, in this

case, the simulated system is ‘‘trapped’’ in a metastable

phase and the slower dynamics of PP simulations does

not allow the system to escape from such a metastable

phase to become more stable hexagonal structure. In

order to confirm this point, the equilibrium structure

obtained in the MD-SCF simulation is used as the initial

state for the PP simulation after a short energy minimi-

zation is performed. In this case, as shown in Fig. 4b, the

non-bonded interaction energy is lower and the structure

is stable during all the simulations. In Fig. 4c, this

structure is depicted in a view showing the hexagonal

arrangement.

3.2 Effects of density coarse-graining

on structure and dynamics

As described in Sect. 2, coarse-grained density fields

/KðrÞ, obtained from the particle positions for every par-

ticle type K, are used to calculate MD-SCF potentials and

forces using Eqs. 8 and 9.

According to the scheme described in Sect. 2, two

parameters, that is, the cell size l and the update frequency

Dtupdate, regulate the degree of coarse-graining of the

density fields. Larger cell sizes lead to more collective

density fields. As for the value of the update frequency, it

has to be chosen in a way that the approximation of slow

variation in the field with respect to the displacements of

the particles is valid between two density updates. As

already pointed out by Daoulas et al. in the context of

SCMF Monte Carlo simulations, the update of the density

field introduces the correlations between different mole-

cules. On the other side, in the timesteps between two

updates, the molecules are decoupled and move indepen-

dently in the external density field. The validity of the so-

called quasi-instantaneous field approximation [58] will be

considered in the following by comparing simulation

results using different update frequencies. It is worth to

note that the concept of using different time-integration

steps for ‘‘stiff’’ and ‘‘soft’’ degrees of freedom has been

exploited also for PP simulations. Popular examples of this

can be Molecular Dynamics algorithms with multiple time

scales [63].

Table 4 Details about

simulated systems

a In the reference PP model,

each CG water bead

corresponds to 4 molecules; in

the text of the manuscript and in

the figures, this factor has been

taken into account

System Box size (nm) Composition T (K)

x = y = z No. of particles No. of DPPC No. of water Water/DPPCa ratio

1 7.923 3,876 20 3,636 182 325

2 8.176 4,096 320 256 0.8 325

3 12.964 21,216 1,664 1,248 0.75 318

4 13.486 24,128 1,664 4,160 2.5 318

5 12.376 18,600 300 15,000 50 318

6 17.309 42,588 208 40,092 192.7 318
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In Fig. 5, the structures obtained using different density

update frequencies and cell sizes are summarized. In par-

ticular, for high and intermediate water concentrations, the

formation of a micelle and lipid bilayer is always observed

using large values of field update interval (up to 900

timesteps) and the grid size (up to 2.5r = 1.175 nm).

Differently, the hexagonal phase expected at low water

concentration can be obtained for grid sizes smaller than 2r
(l & 1 nm) and update interval shorter than 500 timesteps.

For larger values of the update interval or of the grid size,

the cylinders are not formed and instead irregular reverse

micelles are obtained as shown in Fig. 5 (labeled as im).

This behavior can be explained by comparing the size of

the grid with the lengthscale of the self-assembling struc-

ture. The diameter of the micelle and the bilayer thickness

are both about 4 nm, while the diameter of the tubes

present in the hexagonal phase is smaller (&1 nm). Then

in this case when the size of the grid used for the density

coarse-graining starts to approach the size of the cylindrical

tubes, these structures cannot be described correctly.

Similar considerations can be made for the density update

interval. In Fig. 6 is reported the behavior of the mean

square displacement as a function of time for different

values of the density update intervals for the two different

systems reported in Fig. 2. In particular, in order to com-

pare the displacements with the size of the structures, the

square root of the mean square displacement (MSD) nor-

malized by the grid size is reported.

This is a quantitative way to understand the validity of

the approximation of slow variation in the field with

respect to the particle displacement between two density

updates. In fact, the plots shown in Fig. 6 quantify how

many cells a particle can cross in a given amount of sim-

ulation time. From Fig. 6, it is clear that for update inter-

vals between 500 and 900 steps (corresponding to 15 and

36 ps), both water and DPPC beads undergo a

Fig. 2 Comparison of the self-assembling process of a DPPC micelle

in water for MD-SCF (a) and PP simulations (b). Comparison of self-

assembling process of a reverse micellar phase for MD-SCF (c) and

PP simulations (d) is given. In the figures, the time behavior of

particle-field intermolecular potential in the MD-SCF simulation is

compared with the behavior of the non-bonded Lennard–Jones

potential in the PP-MD simulation. Potential units are kJ/mol
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displacement equal to or larger than a cell size (i.e., larger

than 0.6 nm).

From the comparison of the self-assembling processes

obtained in the simulations shown in Fig. 2, it is clear that

the dynamics of the system simulated in the MD-SCF

method is faster than in the PP method. This is due to the

smoother potentials and forces characterizing the MD-SCF

Hamiltonian. In particular, the models used in the MD-SCF

simulation include the effect of excluded volume interac-

tions between particles by using incompressibility condi-

tion as described in Eq. 7. Then, forces depend on the

derivatives of the density fields with a change much more

smoother than distances between particles pairs.

In order to compare more quantitatively the different

dynamics in PP and PF models, diffusion coefficients have

been calculated from the behavior of the MSD for water

and DPPC particles versus time. In particular in Fig. 7, the

ratio D* between diffusion coefficients calculated in the

MD-SCF simulations (update interval of 300 timesteps and

grid size l = 2.0r) and the one calculated in the reference

PP simulation is reported. From the figure, it is clear that

for all considered systems, the diffusion coefficients cal-

culated in the MD-SCF simulations are always larger than

ones calculated in the PP simulations. In particular, for

DPPC, they are from 4 to 6 times larger than those in the

PP simulations, and for water, they are from 1.25 to 2.5

larger. Absolute values of diffusion coefficients calculated

using different grid sizes and update interval for both water

and DPPC are reported in Tables 5, 6, 7, 8.

The ratios between the diffusion coefficients obtained in

the MD-SCF and PP simulations can be regarded as scaling

factors to connect the dynamics of the MD-SCF simula-

tions with that of the reference PP ones. This kind of

comparison has been made also for the reference PP sim-

ulations to connect their dynamics with atomistic ones [59],

and according to this comparison, we can estimate that the

reference PP models have a dynamics that is about 4 times

faster than atomistic simulations. Considering this point,

the dynamics in MD-SCF simulations should be about

20–25 times faster than that in the atomistic simulations. It

is interesting to note that the scaling factors between the PP

and MD-SCF simulations are functions of water concen-

trations. In particular, they become larger as the water

content becomes smaller. This behavior, from practical

purposes, is very convenient because we can simulate with

a largely improved efficiency the very slow dynamics in

atomistic systems whose equilibration is difficult with the

PP coarse-grained or the atomistic simulations.

3.3 Simulations on larger systems

On the basis of the results presented in the previous sub-

section, MD-SCF simulations on larger systems have been

performed using a grid size l = 1.5r and the density update

interval of 300 timesteps. In particular, we simulated the

spontaneous self-assembling processes in several DPPC/

water systems for 1.2 ls using a cubic box with the side

lengths that are about double of those used in the simula-

tions reported in the previous subsections. For all consid-

ered systems, the starting configuration is made up of

randomly mixed lipid and water molecules.

In Fig. 8, the time behaviors of MD-SCF potential

together with some snapshots for four DPPC/water systems

at different water concentration have been shown (systems

3–6), while the details of these systems are shown in

Table 4.

For all of the systems shown in Fig. 8 after 500 ns, the

equilibrium is achieved and a stable phase-separated

structure is formed. In particular for the system at lower

water concentration shown in Fig. 8a (system 3, 3 water/

lipid) after 400 ns, a stable reverse hexagonal phase is

formed. At intermediate water content (system 4, 10 water/

Fig. 3 Radial density profiles of the micelle obtained in the MD-SCF

(a) and PP (b) simulations on system 1
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Fig. 4 Comparison of self-assembling process of cylinders in the

reverse micellar phase obtained in the MD-SCF and PP simulations (a).

Comparison between time behavior of Lennard–Jones non-bonded

potential (kJ/mol) of PP simulations obtained in a spontaneous

assembling process from a uniformly mixed state (black curve) and

that of PP simulation starting from the self-assembled structure

obtained in the MD-SCF simulation (red curve) (b). Snapshot of the

system showing the hexagonal arrangement of cylinders in the reverse

micellar phase (c)
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lipid), a stable bilayer phase is formed before 500 ns

(Fig. 8b).

Differently, in system 5 (Fig. 8c), where the water

content is higher, after a rapid initial local clustering after

100 ns, there is a coalescence to a bilayer structure with

curved edges (bicelle) leaving a small single spherical

micelle beside it. Between 100 and 200 ns, a process of

fusion starts to give a stable bilayer structure with curved

edges involving all 300 DPPC molecules present in the

simulation box. Finally, the simulation of the system 6 with

the water content of 771 water/lipid, after an initial clus-

tering, the formation of two nearly spherical micelles is

obtained.

A further validation of the proposed models can be done

by considering the average number of lipids/micelle. In the

Fig. 9a is reported the time evolution of the number of

clusters together with the average number of lipid per

cluster for a system having 771 water/lipids. Two lipids are

considered to be in the same cluster if at least one distance

between their beads is smaller than 1.2 nm. According to

this choice, the average number of lipids/cluster (micelle)

is about 80. This value has been averaged starting from

400 ns, when the system shows to be in equilibrium. As for

available experimental data, sodium dodecyl sulfate (SDS)

in physiological conditions forms micelles with an aggre-

gation number ranging from 50 to 80 [64]. In Fig. 9b, the

micelle size distribution, averaged from 400 to 600 ns, has

Fig. 5 Graphical matrix

summarizing the structures

obtained using different density

updates intervals (y axis,

timesteps unit) and cell sizes

l (x axis, unit of r)

Fig. 6 Square root of normalized mean square displacement of water,

DPPC and water beads as a function of time

Fig. 7 Ratio between MD-SCF and PP diffusion coefficients as a

function of water/DPPC ration calculated for water (black curve) and

DPPC (red curve)

Theor Chem Acc (2012) 131:1167 Page 11 of 16

123



been also reported. From the figure, it is clear that the

distribution is trimodal, showing three peaks. The first one

corresponds to free lipid molecules, the second one cor-

responds to a smaller micelle composed of about 50 lipids,

and the biggest one composed of about 150 lipids. This

distribution can be also visualized by looking at some

representative simulation snapshot like the one depicted in

Fig. 9c. Analogous behavior has been found from PP

simulations, where very similar structures can be obtained

as shown in Fig. 9c.

Table 5 Diffusion coefficients

calculated using different

update intervals and different

grid sizes for water in system 1

Update freq. (timesteps) Water (cm2/s 9 105)

l = 1.25r l = 1.50r l = 2.0r l = 2.5r

Particle–particle 2.45 ± 0.06 – – –

10 3.04 ± 0.06 3.02 ± 0.02 3.04 ± 0.02 2.93 ± 0.07

100 3.06 ± 0.07 3.07 ± 0.01 2.9 ± 0.1 2.94 ± 0.06

300 3.05 ± 0.01 3.12 ± 0.02 3.05 ± 0.05 3.04 ± 0.03

500 3.15 ± 0.03 3.18 ± 0.05 3.08 ± 0.04 3.06 ± 0.01

700 3.23 ± 0.02 3.02 ± 0.05 3.12 ± 0.05 3.08 ± 0.05

Table 6 Diffusion coefficients

calculated using different

update intervals and different

grid sizes for DPPC in system 1

Update freq. (timesteps) DPPC (cm2/s 9 105)

l = 1.25 r l = 1.50 r l = 2.0 r l = 2.5 r

Particle–particle 0.024 ± 0.003 – – –

10 0.085 ± 0.004 0.090 ± 0.003 0.132 ± 0.002 0.093 ± 0.001

100 0.12 ± 0.01 0.118 ± 0.008 0.091 ± 0.002 0.992 ± 0.008

300 0.09 ± 0.02 0.12 ± 0.04 0.14 ± 0.05 1.01 ± 0.03

500 0.076 ± 0.004 0.14 ± 0.02 0.089 ± 0.003 1.03 ± 0.03

700 0.089 ± 0.006 0.088 ± 0.003 0.096 ± 0.001 1.14 ± 0.09

Table 7 Diffusion coefficients

calculated using different

update intervals and different

grid sizes for water in system 2

Update freq. (timesteps) Water (cm2/s 9 105)

l = 1.25 r l = 1.50 r l = 2.0 r l = 2.5 r

Particle–particle 0.3813 ± 0.0007 – – –

10 1.02 ± 0.06 0.85 ± 0.02 0.98 ± 0.05 1.42 ± 0.02

100 0.957 ± 0.005 0.61 ± 0.08 0.84 ± 0.06 1.61 ± 0.04

300 0.88 ± 0.09 0.90 ± 0.07 0.6 ± 0.3 1.36 ± 0.06

500 0.87 ± 0.08 0.8 ± 0.2 0.859 ± 0.003 1.02 ± 0.04

700 1.07 ± 0.04 0.46 ± 0.03 0.936 ± 0.008 1.340 ± 0.007

Table 8 Diffusion coefficients

calculated using different

update intervals and different

grid sizes for DPPC in system 2

Update freq. (timesteps) DPPC (cm2/s 9 105)

l = 1.25 r l = 1.50 r l = 2.0 r l = 2.5 r

Particle–particle 0.032 ± 0.002 – – –

10 0.12 ± 0.01 0.14 ± 0.02 0.20 ± 0.01 0.24 ± 0.05

100 0.132 ± 0.002 0.148 ± 0.004 0.196 ± 0.004 0.24 ± 0.01

300 0.135 ± 0.002 0.155 ± 0.008 0.183 ± 0.001 0.25 ± 0.01

500 0.153 ± 0.007 0.158 ± 0.002 0.16 ± 0.02 0.24 ± 0.01

700 0.16 ± 0.01 0.156 ± 0.003 0.186 ± 0.001 0.25 ± 0.04
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4 Conclusions

The validation of a coarse-grained model for phospholipids

suitable for a recently developed hybrid methodology

combining particles and density fields (MD-SCF) has been

reported for DPPC in non-bilayer phases.

According to the mean field coarse-graining strategy,

pair interactions between particles are replaced by the

calculation of the interactions of single particles in an

external field. In principle, the parameters of a coarse-

grained model are not always transferable. The comparison

between PP and MD-SCF results for non-lamellar phases

(stable at low or high water concentration) gave a first

confirmation that the proposed models reproduce the cor-

rect phase behavior at different compositions. These results

encouraged to compare at a more detailed level hybrid

particle-field and the reference particle–particle models. In

particular, the density profiles of micelles simulated with

MD-SCF and conventional MD methods are very similar.

Furthermore, the average number of lipids/micelle is well

reproduced with respect to reference particle–particle

simulations and available experimental data.

As for dynamical properties, the self-assembly process

is faster in MD-SCF simulations. Using a systematic

comparison between diffusion coefficients, a quantitative

scale factors between the dynamics of the coarse-grained

hybrid models and the dynamics of corresponding coarse-

grained or atomistic particle–particle models have been

obtained.

The lower computational costs of the hybrid techniques

together with a faster dynamics due to the smoothness of

the potentials and forces enable us to perform simulations

with a considerably improved efficiency. To have an idea

about simulations presented in this paper, for systems 3–6

of Fig. 8, it is possible to calculate about 1 ls/day using 8

processors (Intel E7330, 2.40 GHz). The hybrid MD-SCF

Fig. 8 Time behaviors of the MD-SCF potential together with some snapshots for a system 3 forming a reverse micellar hexagonal phase,

b system 4 forming a lipid bilayer phase, c system 5 forming a single bicelle and d system 6 forming a micellar phase
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scheme is particularly efficient in parallel simulations,

especially for large systems when the use of a large number

of CPUs is efficient [61], and the validation of the models

presented in this paper will allow their application to large-

scale systems needed to study the application of the self-

assembled structures of lipids to nanotechnologies.
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